Update the KNearest classifier using the specific traing data.
Namespace:
Emgu.CV.MLAssembly: Emgu.CV.ML (in Emgu.CV.ML.dll) Version: 2.0.0.0 (2.0.0.0)
Syntax
C# |
---|
public bool Train( Matrix<float> trainData, Matrix<float> responses, Matrix<byte> sampleIdx, bool isRegression, int maxK, bool updateBase ) |
Visual Basic (Declaration) |
---|
Public Function Train ( _ trainData As Matrix(Of Single), _ responses As Matrix(Of Single), _ sampleIdx As Matrix(Of Byte), _ isRegression As Boolean, _ maxK As Integer, _ updateBase As Boolean _ ) As Boolean |
Visual C++ |
---|
public: bool Train( Matrix<float>^ trainData, Matrix<float>^ responses, Matrix<unsigned char>^ sampleIdx, bool isRegression, int maxK, bool updateBase ) |
Parameters
- trainData
- Type: Emgu.CV..::.Matrix<(Of <(Single>)>)
The training data. A 32-bit floating-point, single-channel matrix, one vector per row
- responses
- Type: Emgu.CV..::.Matrix<(Of <(Single>)>)
A floating-point matrix of the corresponding output vectors, one vector per row.
- sampleIdx
- Type: Emgu.CV..::.Matrix<(Of <(Byte>)>)
Can be null if not needed. When specified, identifies samples of interest. It is a Matrix>int< of nx1
- isRegression
- Type: System..::.Boolean
Specify the output variables type. It can be either categorical (isRegression=false) or ordered (isRegression=true)
- maxK
- Type: System..::.Int32
The number of maximum neighbors that may be passed to the method findNearest.
- updateBase
- Type: System..::.Boolean
If true, the existing classifer is updated using the new training data; Otherwise, the classifier is trained from scratch
Return Value
[Missing <returns> documentation for "M:Emgu.CV.ML.KNearest.Train(Emgu.CV.Matrix{System.Single},Emgu.CV.Matrix{System.Single},Emgu.CV.Matrix{System.Byte},System.Boolean,System.Int32,System.Boolean)"]