The method trains the SVM model automatically by choosing the optimal parameters C, gamma, p, nu, coef0, degree from CvSVMParams. By the optimality one mean that the cross-validation estimate of the test set error is minimal.
Namespace: Emgu.CV.MLAssembly: Emgu.CV.ML (in Emgu.CV.ML.dll) Version: 2.2.0.1010 (2.2.0.1010)
Syntax
C# | Visual Basic | Visual C++ |
public: bool TrainAuto( Matrix<float>^ trainData, Matrix<float>^ responses, Matrix<unsigned char>^ varIdx, Matrix<unsigned char>^ sampleIdx, MCvSVMParams parameters, int kFold )
Parameters
- varIdx
- Matrix<(Of <(<'Byte>)>)>
Can be null if not needed. When specified, identifies variables (features) of interest. It is a Matrix<int> of nx1
- sampleIdx
- Matrix<(Of <(<'Byte>)>)>
Can be null if not needed. When specified, identifies samples of interest. It is a Matrix<int> of nx1
- parameters
- MCvSVMParams
The parameters for SVM
- kFold
- Int32
Cross-validation parameter. The training set is divided into k_fold subsets, one subset being used to train the model, the others forming the test set. So, the SVM algorithm is executed k_fold times
Return Value
[Missing <returns> documentation for "M:Emgu.CV.ML.SVM.TrainAuto(Emgu.CV.Matrix{System.Single},Emgu.CV.Matrix{System.Single},Emgu.CV.Matrix{System.Byte},Emgu.CV.Matrix{System.Byte},Emgu.CV.ML.Structure.MCvSVMParams,System.Int32)"]