This class contains functions to call into machine learning library

Namespace: Emgu.CV.ML
Assembly: Emgu.CV.ML (in Emgu.CV.ML.dll) Version: 2.2.1.1150 (2.2.1.1150)

Syntax

         
 C#  Visual Basic  Visual C++ 
public class MlInvoke
Public Class MlInvoke
public ref class MlInvoke

Members

         
 All Members  Constructors   Methods  
 Public

 Protected
 Instance

 Static 
 Declared

 Inherited
 XNA Framework Only 

 .NET Compact Framework Only 

 MemberDescription
MlInvoke()()()()
Initializes a new instance of the MlInvoke class
CvANN_MLPCreate(IntPtr, ANN_MLP_ACTIVATION_FUNCTION, Double, Double)
Create a neural network using the specific parameters
CvANN_MLPGetLayerCount(IntPtr)
Get the number of layers in the ANN_MLP
CvANN_MLPPredict(IntPtr, IntPtr, IntPtr)
Given the model, predit the outputs response of the inputs samples
CvANN_MLPRelease(IntPtr)
Release the ANN_MLP model
CvANN_MLPTrain(IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvANN_MLP_TrainParams%, ANN_MLP_TRAINING_FLAG)
Train the ANN_MLP model with the specific paramters
CvBoostCreate()()()()
Create a default boost classicfier
CvBoostParamsCreate()()()()
Create default parameters for CvBoost
CvBoostParamsRelease(IntPtr)
Release the CvBoostParams
CvBoostPredict(IntPtr, IntPtr, IntPtr, IntPtr, MCvSlice, Boolean)
Runs the sample through the trees in the ensemble and returns the output class label based on the weighted voting
CvBoostRelease(IntPtr)
Release the boost classicfier
CvBoostTrain(IntPtr, IntPtr, DATA_LAYOUT_TYPE, IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvBoostParams, Boolean)
Train the boost tree using the specific traning data
CvDTreeCreate()()()()
Create a default decision tree
CvDTreeParamsCreate()()()()
Create default parameters for CvDTreeParams
CvDTreeParamsRelease(IntPtr)
Release the CvDTreeParams
CvDTreePredict(IntPtr, IntPtr, IntPtr, Boolean)
The method takes the feature vector and the optional missing measurement mask on input, traverses the decision tree and returns the reached leaf node on output. The prediction result, either the class label or the estimated function value, may be retrieved as value field of the CvDTreeNode structure
CvDTreeRelease(IntPtr)
Release the decision tree model
CvDTreeTrain(IntPtr, IntPtr, DATA_LAYOUT_TYPE, IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvDTreeParams)
Train the decision tree using the specific training data
CvEMDefaultCreate()()()()
Create a default EM model
CvEMGetCovs(IntPtr)
Get the covariance matrices of the clusters from the EM model
CvEMGetMeans(IntPtr)
Get the means of the clusters from the EM model
CvEMGetNclusters(IntPtr)
Get the number of clusters from the EM model
CvEMGetProbs(IntPtr)
Get the probabilities from the EM model
CvEMGetWeights(IntPtr)
Get the weights of the clusters from the EM model
CvEMPredict(IntPtr, IntPtr, IntPtr)
Given the EM model, predit the probability of the samples
CvEMRelease(IntPtr)
Release the EM model
CvEMTrain(IntPtr, IntPtr, IntPtr, MCvEMParams, IntPtr)
Train the EM model using the specific training data
CvERTreesCreate()()()()
Create a default extreme random tree
CvERTreesRelease(IntPtr)
Release the extreme random tree model
CvKNearestCreate(IntPtr, IntPtr, IntPtr, Boolean, Int32)
Create the KNearest classifier using the specific traing data.
CvKNearestDefaultCreate()()()()
Create a KNearest classifier
CvKNearestFindNearest(IntPtr, IntPtr, Int32, IntPtr, array<IntPtr>[]()[][], IntPtr, IntPtr)
For each input vector (which are rows of the matrix samples) the method finds k <= get_max_k() nearest neighbor. In case of regression, the predicted result will be a mean value of the particular vector's neighbor responses. In case of classification the class is determined by voting.
CvKNearestRelease(IntPtr)
Release the KNearest classifer
CvKNearestTrain(IntPtr, IntPtr, IntPtr, IntPtr, Boolean, Int32, Boolean)
Update the KNearest classifier using the specific traing data.
CvNormalBayesClassifierCreate(IntPtr, IntPtr, IntPtr, IntPtr)
Create a normal Bayes classifier using the specific training data
CvNormalBayesClassifierDefaultCreate()()()()
Create a normal bayes classifier
CvNormalBayesClassifierPredict(IntPtr, IntPtr, IntPtr)
Given the NormalBayesClassifier model, predit the probability of the samples
CvNormalBayesClassifierRelease(IntPtr)
Release the memory associated with the bayes classifier
CvNormalBayesClassifierTrain(IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, Boolean)
Train the classifier using the specific data
CvRTParamsCreate()()()()
Create default parameters for CvRTParams
CvRTParamsRelease(IntPtr)
Release the CvRTParams
CvRTreesCreate()()()()
Create a default random tree
CvRTreesGetTreeCount(IntPtr)
Get the number of Trees in the Random tree
CvRTreesGetVarImportance(IntPtr)
Get the variable importance
CvRTreesPredict(IntPtr, IntPtr, IntPtr)
The method takes the feature vector and the optional missing measurement mask on input, traverses the random tree and returns the cumulative result from all the trees in the forest (the class that receives the majority of voices, or the mean of the regression function estimates)
CvRTreesRelease(IntPtr)
Release the random tree model
CvRTreesTrain(IntPtr, IntPtr, DATA_LAYOUT_TYPE, IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvRTParams)
Train the random tree using the specific traning data
CvSVMDefaultCreate()()()()
Create a default SVM model
CvSVMGetDefaultGrid(SVM_PARAM_TYPE, MCvParamGrid%)
Get the default parameter grid for the specific SVM type
CvSVMGetParameters(IntPtr, MCvSVMParams%)
Get the parameters of the SVM model
CvSVMGetSupportVector(IntPtr, Int32)
The method retrieves a given support vector
CvSVMGetSupportVectorCount(IntPtr)
The method retrieves the number of support vectors
CvSVMGetVarCount(IntPtr)
The method retrieves the number of vars
CvSVMPredict(IntPtr, IntPtr)
Predicts response for the input sample.
CvSVMRelease(IntPtr)
Release the SVM model and all the memory associated to ir
CvSVMTrain(IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvSVMParams)
Train the SVM model with the specific paramters
CvSVMTrainAuto(IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvSVMParams, Int32, MCvParamGrid, MCvParamGrid, MCvParamGrid, MCvParamGrid, MCvParamGrid, MCvParamGrid)
The method trains the SVM model automatically by choosing the optimal parameters C, gamma, p, nu, coef0, degree from CvSVMParams. By the optimality one mean that the cross-validation estimate of the test set error is minimal.
Equals(Object)
Determines whether the specified Object is equal to the current Object.
(Inherited from Object.)
Finalize()()()()
Allows an Object to attempt to free resources and perform other cleanup operations before the Object is reclaimed by garbage collection.
(Inherited from Object.)
GetHashCode()()()()
Serves as a hash function for a particular type.
(Inherited from Object.)
GetType()()()()
Gets the Type of the current instance.
(Inherited from Object.)
MemberwiseClone()()()()
Creates a shallow copy of the current Object.
(Inherited from Object.)
StatModelClear(IntPtr)
Clear the statistic model
StatModelLoad(IntPtr, String, IntPtr)
Load the statistic model from the specific file
StatModelSave(IntPtr, String, IntPtr)
Save the statistic model to the specific file
ToString()()()()
Returns a String that represents the current Object.
(Inherited from Object.)

Inheritance Hierarchy

System..::..Object
  Emgu.CV.ML..::..MlInvoke

See Also