This class contains functions to call into machine learning library
Namespace: Emgu.CV.MLAssembly: Emgu.CV.ML (in Emgu.CV.ML.dll) Version: 2.2.1.1150 (2.2.1.1150)
Syntax
C# | Visual Basic | Visual C++ |
public class MlInvoke
Public Class MlInvoke
public ref class MlInvoke
Members
All Members | Constructors ![]() | Methods ![]() |
![]() ![]() | ![]() ![]() ![]() | ![]() ![]() | ![]() ![]() ![]() ![]() |
Member | Description | |
---|---|---|
![]() | MlInvoke()()()() | Initializes a new instance of the MlInvoke class |
![]() ![]() | CvANN_MLPCreate(IntPtr, ANN_MLP_ACTIVATION_FUNCTION, Double, Double) |
Create a neural network using the specific parameters
|
![]() ![]() | CvANN_MLPGetLayerCount(IntPtr) |
Get the number of layers in the ANN_MLP
|
![]() ![]() | CvANN_MLPPredict(IntPtr, IntPtr, IntPtr) |
Given the model, predit the outputs response of the inputs samples
|
![]() ![]() | CvANN_MLPRelease(IntPtr) |
Release the ANN_MLP model
|
![]() ![]() | CvANN_MLPTrain(IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvANN_MLP_TrainParams%, ANN_MLP_TRAINING_FLAG) |
Train the ANN_MLP model with the specific paramters
|
![]() ![]() | CvBoostCreate()()()() |
Create a default boost classicfier
|
![]() ![]() | CvBoostParamsCreate()()()() |
Create default parameters for CvBoost
|
![]() ![]() | CvBoostParamsRelease(IntPtr) |
Release the CvBoostParams
|
![]() ![]() | CvBoostPredict(IntPtr, IntPtr, IntPtr, IntPtr, MCvSlice, Boolean) |
Runs the sample through the trees in the ensemble and returns the output class label based on the weighted voting
|
![]() ![]() | CvBoostRelease(IntPtr) |
Release the boost classicfier
|
![]() ![]() | CvBoostTrain(IntPtr, IntPtr, DATA_LAYOUT_TYPE, IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvBoostParams, Boolean) |
Train the boost tree using the specific traning data
|
![]() ![]() | CvDTreeCreate()()()() |
Create a default decision tree
|
![]() ![]() | CvDTreeParamsCreate()()()() |
Create default parameters for CvDTreeParams
|
![]() ![]() | CvDTreeParamsRelease(IntPtr) |
Release the CvDTreeParams
|
![]() ![]() | CvDTreePredict(IntPtr, IntPtr, IntPtr, Boolean) |
The method takes the feature vector and the optional missing measurement mask on input, traverses the decision tree and returns the reached leaf node on output. The prediction result, either the class label or the estimated function value, may be retrieved as value field of the CvDTreeNode structure
|
![]() ![]() | CvDTreeRelease(IntPtr) |
Release the decision tree model
|
![]() ![]() | CvDTreeTrain(IntPtr, IntPtr, DATA_LAYOUT_TYPE, IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvDTreeParams) |
Train the decision tree using the specific training data
|
![]() ![]() | CvEMDefaultCreate()()()() |
Create a default EM model
|
![]() ![]() | CvEMGetCovs(IntPtr) |
Get the covariance matrices of the clusters from the EM model
|
![]() ![]() | CvEMGetMeans(IntPtr) |
Get the means of the clusters from the EM model
|
![]() ![]() | CvEMGetNclusters(IntPtr) |
Get the number of clusters from the EM model
|
![]() ![]() | CvEMGetProbs(IntPtr) |
Get the probabilities from the EM model
|
![]() ![]() | CvEMGetWeights(IntPtr) |
Get the weights of the clusters from the EM model
|
![]() ![]() | CvEMPredict(IntPtr, IntPtr, IntPtr) |
Given the EM model, predit the probability of the samples |
![]() ![]() | CvEMRelease(IntPtr) |
Release the EM model
|
![]() ![]() | CvEMTrain(IntPtr, IntPtr, IntPtr, MCvEMParams, IntPtr) |
Train the EM model using the specific training data
|
![]() ![]() | CvERTreesCreate()()()() |
Create a default extreme random tree
|
![]() ![]() | CvERTreesRelease(IntPtr) |
Release the extreme random tree model
|
![]() ![]() | CvKNearestCreate(IntPtr, IntPtr, IntPtr, Boolean, Int32) |
Create the KNearest classifier using the specific traing data.
|
![]() ![]() | CvKNearestDefaultCreate()()()() |
Create a KNearest classifier
|
![]() ![]() | CvKNearestFindNearest(IntPtr, IntPtr, Int32, IntPtr, array<IntPtr>[]()[][], IntPtr, IntPtr) |
For each input vector (which are rows of the matrix samples) the method finds k <= get_max_k() nearest neighbor. In case of regression, the predicted result will be a mean value of the particular vector's neighbor responses. In case of classification the class is determined by voting.
|
![]() ![]() | CvKNearestRelease(IntPtr) |
Release the KNearest classifer
|
![]() ![]() | CvKNearestTrain(IntPtr, IntPtr, IntPtr, IntPtr, Boolean, Int32, Boolean) |
Update the KNearest classifier using the specific traing data.
|
![]() ![]() | CvNormalBayesClassifierCreate(IntPtr, IntPtr, IntPtr, IntPtr) |
Create a normal Bayes classifier using the specific training data
|
![]() ![]() | CvNormalBayesClassifierDefaultCreate()()()() |
Create a normal bayes classifier
|
![]() ![]() | CvNormalBayesClassifierPredict(IntPtr, IntPtr, IntPtr) |
Given the NormalBayesClassifier model, predit the probability of the samples |
![]() ![]() | CvNormalBayesClassifierRelease(IntPtr) |
Release the memory associated with the bayes classifier
|
![]() ![]() | CvNormalBayesClassifierTrain(IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, Boolean) |
Train the classifier using the specific data
|
![]() ![]() | CvRTParamsCreate()()()() |
Create default parameters for CvRTParams
|
![]() ![]() | CvRTParamsRelease(IntPtr) |
Release the CvRTParams
|
![]() ![]() | CvRTreesCreate()()()() |
Create a default random tree
|
![]() ![]() | CvRTreesGetTreeCount(IntPtr) |
Get the number of Trees in the Random tree
|
![]() ![]() | CvRTreesGetVarImportance(IntPtr) |
Get the variable importance
|
![]() ![]() | CvRTreesPredict(IntPtr, IntPtr, IntPtr) |
The method takes the feature vector and the optional missing measurement mask on input, traverses the random tree and returns the cumulative result from all the trees in the forest (the class that receives the majority of voices, or the mean of the regression function estimates)
|
![]() ![]() | CvRTreesRelease(IntPtr) |
Release the random tree model
|
![]() ![]() | CvRTreesTrain(IntPtr, IntPtr, DATA_LAYOUT_TYPE, IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvRTParams) |
Train the random tree using the specific traning data
|
![]() ![]() | CvSVMDefaultCreate()()()() |
Create a default SVM model
|
![]() ![]() | CvSVMGetDefaultGrid(SVM_PARAM_TYPE, MCvParamGrid%) |
Get the default parameter grid for the specific SVM type
|
![]() ![]() | CvSVMGetParameters(IntPtr, MCvSVMParams%) |
Get the parameters of the SVM model
|
![]() ![]() | CvSVMGetSupportVector(IntPtr, Int32) |
The method retrieves a given support vector
|
![]() ![]() | CvSVMGetSupportVectorCount(IntPtr) |
The method retrieves the number of support vectors
|
![]() ![]() | CvSVMGetVarCount(IntPtr) |
The method retrieves the number of vars
|
![]() ![]() | CvSVMPredict(IntPtr, IntPtr) |
Predicts response for the input sample.
|
![]() ![]() | CvSVMRelease(IntPtr) |
Release the SVM model and all the memory associated to ir
|
![]() ![]() | CvSVMTrain(IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvSVMParams) |
Train the SVM model with the specific paramters
|
![]() ![]() | CvSVMTrainAuto(IntPtr, IntPtr, IntPtr, IntPtr, IntPtr, MCvSVMParams, Int32, MCvParamGrid, MCvParamGrid, MCvParamGrid, MCvParamGrid, MCvParamGrid, MCvParamGrid) |
The method trains the SVM model automatically by choosing the optimal parameters C, gamma, p, nu, coef0, degree from CvSVMParams. By the optimality one mean that the cross-validation estimate of the test set error is minimal.
|
![]() | Equals(Object) | (Inherited from Object.) |
![]() | Finalize()()()() |
Allows an Object to attempt to free resources and perform other cleanup operations before the Object is reclaimed by garbage collection.
(Inherited from Object.) |
![]() | GetHashCode()()()() |
Serves as a hash function for a particular type.
(Inherited from Object.) |
![]() | GetType()()()() |
Gets the Type of the current instance.
(Inherited from Object.) |
![]() | MemberwiseClone()()()() |
Creates a shallow copy of the current Object.
(Inherited from Object.) |
![]() ![]() | StatModelClear(IntPtr) |
Clear the statistic model
|
![]() ![]() | StatModelLoad(IntPtr, String, IntPtr) |
Load the statistic model from the specific file
|
![]() ![]() | StatModelSave(IntPtr, String, IntPtr) |
Save the statistic model to the specific file
|
![]() | ToString()()()() | (Inherited from Object.) |