http://www.emgu.com
The method trains the SVM model automatically by choosing the optimal parameters C, gamma, p, nu, coef0, degree from CvSVMParams. By the optimality one mean that the cross-validation estimate of the test set error is minimal.

Namespace: Emgu.CV.ML
Assembly: Emgu.CV.ML (in Emgu.CV.ML.dll) Version: 2.4.0.1717 (2.4.0.1717)

Syntax

C#
public static bool CvSVMTrainAuto(
	IntPtr model,
	IntPtr trainData,
	IntPtr responses,
	IntPtr varIdx,
	IntPtr sampleIdx,
	MCvSVMParams parameters,
	int kFold,
	MCvParamGrid cGrid,
	MCvParamGrid gammaGrid,
	MCvParamGrid pGrid,
	MCvParamGrid nuGrid,
	MCvParamGrid coefGrid,
	MCvParamGrid degreeGrid
)
Visual Basic
Public Shared Function CvSVMTrainAuto ( _
	model As IntPtr, _
	trainData As IntPtr, _
	responses As IntPtr, _
	varIdx As IntPtr, _
	sampleIdx As IntPtr, _
	parameters As MCvSVMParams, _
	kFold As Integer, _
	cGrid As MCvParamGrid, _
	gammaGrid As MCvParamGrid, _
	pGrid As MCvParamGrid, _
	nuGrid As MCvParamGrid, _
	coefGrid As MCvParamGrid, _
	degreeGrid As MCvParamGrid _
) As Boolean
Visual C++
public:
static bool CvSVMTrainAuto(
	IntPtr model, 
	IntPtr trainData, 
	IntPtr responses, 
	IntPtr varIdx, 
	IntPtr sampleIdx, 
	MCvSVMParams parameters, 
	int kFold, 
	MCvParamGrid cGrid, 
	MCvParamGrid gammaGrid, 
	MCvParamGrid pGrid, 
	MCvParamGrid nuGrid, 
	MCvParamGrid coefGrid, 
	MCvParamGrid degreeGrid
)

Parameters

model
Type: System..::..IntPtr
The SVM model
trainData
Type: System..::..IntPtr
The training data.
responses
Type: System..::..IntPtr
The response for the training data.
varIdx
Type: System..::..IntPtr
Can be null if not needed. When specified, identifies variables (features) of interest. It is a Matrix>int< of nx1
sampleIdx
Type: System..::..IntPtr
Can be null if not needed. When specified, identifies samples of interest. It is a Matrix>int< of nx1
parameters
Type: Emgu.CV.ML.Structure..::..MCvSVMParams
The parameters for SVM
kFold
Type: System..::..Int32
Cross-validation parameter. The training set is divided into k_fold subsets, one subset being used to train the model, the others forming the test set. So, the SVM algorithm is executed k_fold times
cGrid
Type: Emgu.CV.ML.Structure..::..MCvParamGrid
cGrid
gammaGrid
Type: Emgu.CV.ML.Structure..::..MCvParamGrid
gammaGrid
pGrid
Type: Emgu.CV.ML.Structure..::..MCvParamGrid
pGrid
nuGrid
Type: Emgu.CV.ML.Structure..::..MCvParamGrid
nuGrid
coefGrid
Type: Emgu.CV.ML.Structure..::..MCvParamGrid
coedGrid
degreeGrid
Type: Emgu.CV.ML.Structure..::..MCvParamGrid
degreeGrid

Return Value

[Missing <returns> documentation for "M:Emgu.CV.ML.MlInvoke.CvSVMTrainAuto(System.IntPtr,System.IntPtr,System.IntPtr,System.IntPtr,System.IntPtr,Emgu.CV.ML.Structure.MCvSVMParams,System.Int32,Emgu.CV.ML.Structure.MCvParamGrid,Emgu.CV.ML.Structure.MCvParamGrid,Emgu.CV.ML.Structure.MCvParamGrid,Emgu.CV.ML.Structure.MCvParamGrid,Emgu.CV.ML.Structure.MCvParamGrid,Emgu.CV.ML.Structure.MCvParamGrid)"]

See Also