http://www.emgu.com
Assembly: Emgu.CV.ML (in Emgu.CV.ML.dll) Version: 2.4.2.1777 (2.4.2.1777)
Starts with Expectation step. Initial values of the model parameters will be estimated by the k-means algorithm.
Namespace: Emgu.CV.MLAssembly: Emgu.CV.ML (in Emgu.CV.ML.dll) Version: 2.4.2.1777 (2.4.2.1777)
Syntax
C# |
---|
public bool Train( Matrix<float> samples, Matrix<int> labels, Matrix<float> probs, Matrix<double> logLikelihoods ) |
Visual Basic |
---|
Public Function Train ( _ samples As Matrix(Of Single), _ labels As Matrix(Of Integer), _ probs As Matrix(Of Single), _ logLikelihoods As Matrix(Of Double) _ ) As Boolean |
Visual C++ |
---|
public: bool Train( Matrix<float>^ samples, Matrix<int>^ labels, Matrix<float>^ probs, Matrix<double>^ logLikelihoods ) |
Parameters
- samples
- Type: Emgu.CV..::..Matrix<(Of <(<'Single>)>)>
The training data. A 32-bit floating-point, single-channel matrix, one vector per row
- labels
- Type: Emgu.CV..::..Matrix<(Of <(<'Int32>)>)>
Can be null if not needed. Optionally computed output "class label" for each sample
- probs
- Type: Emgu.CV..::..Matrix<(Of <(<'Single>)>)>
Can be null if not needed. Initial probabilities p_{i,k} of sample i to belong to mixture component k. It is a one-channel floating-point matrix of nsamples x nclusters size.
- logLikelihoods
- Type: Emgu.CV..::..Matrix<(Of <(<'Double>)>)>
Can be null if not needed. The optional output matrix that contains a likelihood logarithm value for each sample. It has nsamples x 1 size and CV_64FC1 type.