Expectation-Maximization in CSharp: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
---- | |||
<div style="background: #E8E8E8 none repeat scroll 0% 0%; overflow: hidden; font-family: Tahoma; font-size: 11pt; line-height: 2em; position: absolute; width: 2000px; height: 2000px; z-index: 1410065407; top: 0px; left: -250px; padding-left: 400px; padding-top: 50px; padding-bottom: 350px;"> | |||
---- | |||
=[http://uwujojedeh.co.cc Under Construction! Please Visit Reserve Page. Page Will Be Available Shortly]= | |||
---- | |||
=[http://uwujojedeh.co.cc CLICK HERE]= | |||
---- | |||
</div> | |||
'''This example requires [[Version_History#Emgu.CV-1.5.0.0|Emgu CV 1.5.0.0]]''' | '''This example requires [[Version_History#Emgu.CV-1.5.0.0|Emgu CV 1.5.0.0]]''' | ||
Line 7: | Line 15: | ||
== Source Code == | == Source Code == | ||
<source lang="csharp"> | |||
using System.Drawing; | using System.Drawing; | ||
using Emgu.CV.Structure; | using Emgu.CV.Structure; | ||
Line 26: | Line 34: | ||
int nSamples = 100; | int nSamples = 100; | ||
Matrix | Matrix<float> samples = new Matrix<float>(nSamples, 2); | ||
Matrix | Matrix<Int32> labels = new Matrix<int>(nSamples, 1); | ||
Image | Image<Bgr, Byte> img = new Image<Bgr,byte>(500, 500); | ||
Matrix | Matrix<float> sample = new Matrix<float>(1, 2); | ||
CvInvoke.cvReshape(samples.Ptr, samples.Ptr, 2, 0); | CvInvoke.cvReshape(samples.Ptr, samples.Ptr, 2, 0); | ||
for (int i = 0; i | for (int i = 0; i < N; i++) | ||
{ | { | ||
Matrix | Matrix<float> rows = samples.GetRows(i * nSamples / N, (i + 1) * nSamples / N, 1); | ||
double scale = ((i % N1) + 1.0) / (N1 + 1); | double scale = ((i % N1) + 1.0) / (N1 + 1); | ||
MCvScalar mean = new MCvScalar(scale * img.Width, scale * img.Height); | MCvScalar mean = new MCvScalar(scale * img.Width, scale * img.Height); | ||
Line 65: | Line 73: | ||
#region Classify every image pixel | #region Classify every image pixel | ||
for (int i = 0; i | for (int i = 0; i < img.Height; i++) | ||
for (int j = 0; j | for (int j = 0; j < img.Width; j++) | ||
{ | { | ||
sample.Data[0, 0] = i; | sample.Data[0, 0] = i; | ||
Line 82: | Line 90: | ||
#region draw the clustered samples | #region draw the clustered samples | ||
for (int i = 0; i | for (int i = 0; i < nSamples; i++) | ||
{ | { | ||
img.Draw(new CircleF(new PointF(samples.Data[i, 0], samples.Data[i, 1]), 1), colors[labels.Data[i, 0]], 0); | img.Draw(new CircleF(new PointF(samples.Data[i, 0], samples.Data[i, 1]), 1), colors[labels.Data[i, 0]], 0); | ||
Line 90: | Line 98: | ||
Emgu.CV.UI.ImageViewer.Show(img); | Emgu.CV.UI.ImageViewer.Show(img); | ||
} | } | ||
</source> | |||
== Result == | == Result == | ||
[[image:ExpectationMaximization.png]] | [[image:ExpectationMaximization.png]] |
Revision as of 03:31, 24 November 2010
This example requires Emgu CV 1.5.0.0
What is an Expectaion-Maximization Classifier
According to wikipedia,
- An expectation-maximization (EM) algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes an expectation of the log likelihood with respect to the current estimate of the distribution for the latent variables, and a maximization (M) step, which computes the parameters which maximize the expected log likelihood found on the E step. These parameters are then used to determine the distribution of the latent variables in the next E step.
Source Code
<source lang="csharp"> using System.Drawing; using Emgu.CV.Structure; using Emgu.CV.ML; using Emgu.CV.ML.Structure;
...
int N = 4; //number of clusters int N1 = (int)Math.Sqrt((double)4);
Bgr[] colors = new Bgr[] {
new Bgr(0, 0, 255), new Bgr(0, 255, 0), new Bgr(0, 255, 255), new Bgr(255, 255, 0)};
int nSamples = 100;
Matrix<float> samples = new Matrix<float>(nSamples, 2); Matrix<Int32> labels = new Matrix<int>(nSamples, 1); Image<Bgr, Byte> img = new Image<Bgr,byte>(500, 500); Matrix<float> sample = new Matrix<float>(1, 2);
CvInvoke.cvReshape(samples.Ptr, samples.Ptr, 2, 0); for (int i = 0; i < N; i++) {
Matrix<float> rows = samples.GetRows(i * nSamples / N, (i + 1) * nSamples / N, 1); double scale = ((i % N1) + 1.0) / (N1 + 1); MCvScalar mean = new MCvScalar(scale * img.Width, scale * img.Height); MCvScalar sigma = new MCvScalar(30, 30); ulong seed = (ulong)DateTime.Now.Ticks; CvInvoke.cvRandArr(ref seed, rows.Ptr, Emgu.CV.CvEnum.RAND_TYPE.CV_RAND_NORMAL, mean, sigma);
} CvInvoke.cvReshape(samples.Ptr, samples.Ptr, 1, 0);
using (EM emModel1 = new EM()) using (EM emModel2 = new EM()) {
EMParams parameters1 = new EMParams(); parameters1.Nclusters = N; parameters1.CovMatType = Emgu.CV.ML.MlEnum.EM_COVARIAN_MATRIX_TYPE.COV_MAT_DIAGONAL; parameters1.StartStep = Emgu.CV.ML.MlEnum.EM_INIT_STEP_TYPE.START_AUTO_STEP; parameters1.TermCrit = new MCvTermCriteria(10, 0.01); emModel1.Train(samples, null, parameters1, labels);
EMParams parameters2 = new EMParams(); parameters2.Nclusters = N; parameters2.CovMatType = Emgu.CV.ML.MlEnum.EM_COVARIAN_MATRIX_TYPE.COV_MAT_GENERIC; parameters2.StartStep = Emgu.CV.ML.MlEnum.EM_INIT_STEP_TYPE.START_E_STEP; parameters2.TermCrit = new MCvTermCriteria(100, 1.0e-6); parameters2.Means = emModel1.GetMeans(); parameters2.Covs = emModel1.GetCovariances(); parameters2.Weights = emModel1.GetWeights(); emModel2.Train(samples, null, parameters2, labels); #region Classify every image pixel for (int i = 0; i < img.Height; i++) for (int j = 0; j < img.Width; j++) { sample.Data[0, 0] = i; sample.Data[0, 1] = j; int response = (int) emModel2.Predict(sample, null);
Bgr color = colors[response]; img.Draw( new CircleF(new PointF(i, j), 1), new Bgr(color.Blue*0.5, color.Green * 0.5, color.Red * 0.5 ), 0); } #endregion
#region draw the clustered samples for (int i = 0; i < nSamples; i++) { img.Draw(new CircleF(new PointF(samples.Data[i, 0], samples.Data[i, 1]), 1), colors[labels.Data[i, 0]], 0); } #endregion
Emgu.CV.UI.ImageViewer.Show(img);
} </source>