FAST feature detector in CSharp
Jump to navigation
Jump to search
For people like me who use EmguCV in a commercial application, the SURF feature detector can't be an option because it use patented algorithms. As far as I know, the FAST algorithm is not patented and is not in the "nonfree" DLL of openCV. Please note that I'm not a lawyer and that you may want to validate in your specific country.
So here is a modified version of the example using SURF. This time, I'm using the FAST detector to extract point of interest and then the BriefDescriptorExtractor to create a descriptor (Matrix). Then, with the brute force matcher, I compare my model to my observed image.
It's important to note that FAST is not scale invariant like SURF or SIFT but it can be useful in a lot of situation.
Source Code
public static Image<Bgr, Byte> Draw(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage)
{
HomographyMatrix homography = null;
FastDetector fastCPU = new FastDetector(10, true);
VectorOfKeyPoint modelKeyPoints;
VectorOfKeyPoint observedKeyPoints;
Matrix<int> indices;
BriefDescriptorExtractor descriptor = new BriefDescriptorExtractor();
Matrix<byte> mask;
int k = 2;
double uniquenessThreshold = 0.8;
//extract features from the object image
modelKeyPoints = fastCPU.DetectKeyPointsRaw(modelImage, null);
Matrix<Byte> modelDescriptors = descriptor.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);
// extract features from the observed image
observedKeyPoints = fastCPU.DetectKeyPointsRaw(observedImage, null);
Matrix<Byte> observedDescriptors = descriptor.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
BruteForceMatcher<Byte> matcher = new BruteForceMatcher<Byte>(DistanceType.L2);
matcher.Add(modelDescriptors);
indices = new Matrix<int>(observedDescriptors.Rows, k);
using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
{
matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
}
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(
modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
//Draw the matched keypoints
Image<Bgr, Byte> result = Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
indices, new Bgr(255, 255, 255), new Bgr(255, 255, 255), mask, Features2DToolbox.KeypointDrawType.DEFAULT);
#region draw the projected region on the image
if (homography != null)
{ //draw a rectangle along the projected model
Rectangle rect = modelImage.ROI;
PointF[] pts = new PointF[] {
new PointF(rect.Left, rect.Bottom),
new PointF(rect.Right, rect.Bottom),
new PointF(rect.Right, rect.Top),
new PointF(rect.Left, rect.Top)};
homography.ProjectPoints(pts);
result.DrawPolyline(Array.ConvertAll<PointF, Point>(pts, Point.Round), true, new Bgr(Color.Red), 5);
}
#endregion
return result;
}