Difference between revisions of "K Nearest Neighbors in CSharp"
Jump to navigation
Jump to search
Breadwinka (talk | contribs) |
|||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
'''This example requires [[Version_History#Emgu.CV-1.5.0.0|Emgu CV 1.5.0.0]]''' | '''This example requires [[Version_History#Emgu.CV-1.5.0.0|Emgu CV 1.5.0.0]]''' | ||
== What is a K Nearest Neighbors Classifier == | == What is a K Nearest Neighbors Classifier == | ||
Line 14: | Line 6: | ||
== Source Code == | == Source Code == | ||
− | + | <source lang="csharp"> | |
using System.Drawing; | using System.Drawing; | ||
using Emgu.CV.Structure; | using Emgu.CV.Structure; | ||
Line 27: | Line 19: | ||
#region Generate the traning data and classes | #region Generate the traning data and classes | ||
− | Matrix | + | Matrix<float> trainData = new Matrix<float>(trainSampleCount, 2); |
− | Matrix | + | Matrix<float> trainClasses = new Matrix<float>(trainSampleCount, 1); |
− | Image | + | Image<Bgr, Byte> img = new Image<Bgr, byte>(500, 500); |
− | Matrix | + | Matrix<float> sample = new Matrix<float>(1, 2); |
− | Matrix | + | Matrix<float> trainData1 = trainData.GetRows(0, trainSampleCount >> 1, 1); |
trainData1.SetRandNormal(new MCvScalar(200), new MCvScalar(50)); | trainData1.SetRandNormal(new MCvScalar(200), new MCvScalar(50)); | ||
− | Matrix | + | Matrix<float> trainData2 = trainData.GetRows(trainSampleCount >> 1, trainSampleCount, 1); |
trainData2.SetRandNormal(new MCvScalar(300), new MCvScalar(50)); | trainData2.SetRandNormal(new MCvScalar(300), new MCvScalar(50)); | ||
− | Matrix | + | Matrix<float> trainClasses1 = trainClasses.GetRows(0, trainSampleCount >> 1, 1); |
trainClasses1.SetValue(1); | trainClasses1.SetValue(1); | ||
− | Matrix | + | Matrix<float> trainClasses2 = trainClasses.GetRows(trainSampleCount >> 1, trainSampleCount, 1); |
trainClasses2.SetValue(2); | trainClasses2.SetValue(2); | ||
#endregion | #endregion | ||
− | Matrix | + | Matrix<float> results, neighborResponses; |
− | results = new Matrix | + | results = new Matrix<float>(sample.Rows, 1); |
− | neighborResponses = new Matrix | + | neighborResponses = new Matrix<float>(sample.Rows, K); |
− | //dist = new Matrix | + | //dist = new Matrix<float>(sample.Rows, K); |
using (KNearest knn = new KNearest(trainData, trainClasses, null, false, K)) | using (KNearest knn = new KNearest(trainData, trainClasses, null, false, K)) | ||
{ | { | ||
− | for (int i = 0; i | + | for (int i = 0; i < img.Height; i++) |
{ | { | ||
− | for (int j = 0; j | + | for (int j = 0; j < img.Width; j++) |
{ | { | ||
sample.Data[0, 0] = j; | sample.Data[0, 0] = j; | ||
sample.Data[0, 1] = i; | sample.Data[0, 1] = i; | ||
− | //Matrix | + | //Matrix<float> nearestNeighbors = new Matrix<float>(K* sample.Rows, sample.Cols); |
// estimates the response and get the neighbors' labels | // estimates the response and get the neighbors' labels | ||
float response = knn.FindNearest(sample, K, results, null, neighborResponses, null); | float response = knn.FindNearest(sample, K, results, null, neighborResponses, null); | ||
Line 65: | Line 57: | ||
int accuracy = 0; | int accuracy = 0; | ||
// compute the number of neighbors representing the majority | // compute the number of neighbors representing the majority | ||
− | for (int k = 0; k | + | for (int k = 0; k < K; k++) |
{ | { | ||
if (neighborResponses.Data[0, k] == response) | if (neighborResponses.Data[0, k] == response) | ||
Line 80: | Line 72: | ||
// display the original training samples | // display the original training samples | ||
− | for (int i = 0; i | + | for (int i = 0; i < (trainSampleCount >> 1); i++) |
{ | { | ||
PointF p1 = new PointF(trainData1[i, 0], trainData1[i, 1]); | PointF p1 = new PointF(trainData1[i, 0], trainData1[i, 1]); | ||
Line 89: | Line 81: | ||
Emgu.CV.UI.ImageViewer.Show(img); | Emgu.CV.UI.ImageViewer.Show(img); | ||
− | + | </source> | |
== Result == | == Result == | ||
[[image:KNearest.png]] | [[image:KNearest.png]] |
Revision as of 06:06, 24 November 2010
This example requires Emgu CV 1.5.0.0
What is a K Nearest Neighbors Classifier
According to wikipedia,
- In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a method for classifying objects based on closest training examples in the feature space. k-NN is a type of instance-based learning, or lazy learning where the function is only approximated locally and all computation is deferred until classification. It can also be used for regression.
Source Code
using System.Drawing;
using Emgu.CV.Structure;
using Emgu.CV.ML;
using Emgu.CV.ML.Structure;
...
int K = 10;
int trainSampleCount = 100;
#region Generate the traning data and classes
Matrix<float> trainData = new Matrix<float>(trainSampleCount, 2);
Matrix<float> trainClasses = new Matrix<float>(trainSampleCount, 1);
Image<Bgr, Byte> img = new Image<Bgr, byte>(500, 500);
Matrix<float> sample = new Matrix<float>(1, 2);
Matrix<float> trainData1 = trainData.GetRows(0, trainSampleCount >> 1, 1);
trainData1.SetRandNormal(new MCvScalar(200), new MCvScalar(50));
Matrix<float> trainData2 = trainData.GetRows(trainSampleCount >> 1, trainSampleCount, 1);
trainData2.SetRandNormal(new MCvScalar(300), new MCvScalar(50));
Matrix<float> trainClasses1 = trainClasses.GetRows(0, trainSampleCount >> 1, 1);
trainClasses1.SetValue(1);
Matrix<float> trainClasses2 = trainClasses.GetRows(trainSampleCount >> 1, trainSampleCount, 1);
trainClasses2.SetValue(2);
#endregion
Matrix<float> results, neighborResponses;
results = new Matrix<float>(sample.Rows, 1);
neighborResponses = new Matrix<float>(sample.Rows, K);
//dist = new Matrix<float>(sample.Rows, K);
using (KNearest knn = new KNearest(trainData, trainClasses, null, false, K))
{
for (int i = 0; i < img.Height; i++)
{
for (int j = 0; j < img.Width; j++)
{
sample.Data[0, 0] = j;
sample.Data[0, 1] = i;
//Matrix<float> nearestNeighbors = new Matrix<float>(K* sample.Rows, sample.Cols);
// estimates the response and get the neighbors' labels
float response = knn.FindNearest(sample, K, results, null, neighborResponses, null);
int accuracy = 0;
// compute the number of neighbors representing the majority
for (int k = 0; k < K; k++)
{
if (neighborResponses.Data[0, k] == response)
accuracy++;
}
// highlight the pixel depending on the accuracy (or confidence)
img[i, j] =
response == 1 ?
(accuracy > 5 ? new Bgr(90, 0, 0) : new Bgr(90, 60, 0)) :
(accuracy > 5 ? new Bgr(0, 90, 0) : new Bgr(60, 90, 0));
}
}
}
// display the original training samples
for (int i = 0; i < (trainSampleCount >> 1); i++)
{
PointF p1 = new PointF(trainData1[i, 0], trainData1[i, 1]);
img.Draw(new CircleF(p1, 2.0f), new Bgr(255, 100, 100), -1);
PointF p2 = new PointF(trainData2[i, 0], trainData2[i, 1]);
img.Draw(new CircleF(p2, 2.0f), new Bgr(100, 255, 100), -1);
}
Emgu.CV.UI.ImageViewer.Show(img);