The MCvKalman type exposes the following fields.

Fields

 Public

 Protected
 Instance

 Static
 Declared

 Inherited
 XNA Framework Only

 .NET Compact Framework Only

 MemberDescription
control_matrix
control matrix (B) (it is not used if there is no control)
CP
number of control vector dimensions
DP
number of state vector dimensions
DynamMatr
=transition_matrix->data.fl
error_cov_post
posteriori error estimate covariance matrix P(k)=(I-K(k)*H)*P'(k)
error_cov_pre
priori error estimate covariance matrix P'(k)=A*P(k-1)*At + Q)
gain
Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
KalmGainMatr
=gain->data.fl
measurement_matrix
measurement matrix (H)
measurement_noise_cov
measurement noise covariance matrix (R)
MeasurementMatr
=measurement_matrix->data.fl
MNCovariance
=measurement_noise_cov->data.fl
MP
number of measurement vector dimensions
PNCovariance
=process_noise_cov->data.fl
PosterErrorCovariance
=error_cov_post->data.fl
PosterState
=state_pre->data.fl
PriorErrorCovariance
=error_cov_pre->data.fl
PriorState
=state_post->data.fl
process_noise_cov
process noise covariance matrix (Q)
state_post
corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
state_pre
predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
temp1
temporary matrices
Temp1Data
temp1->data.fl
temp2
temporary matrices
Temp2Data
temp2->data.fl
temp3
temporary matrices
temp4
temporary matrices
temp5
temporary matrices
transition_matrix
state transition matrix (A)

See Also