http://www.emgu.com
Estimate the Gaussian mixture parameters from a samples set. This variation starts with Expectation step. You need to provide initial means of mixture components. Optionally you can pass initial weights and covariance matrices of mixture components.
Namespace: Emgu.CV.MLAssembly: Emgu.CV.ML (in Emgu.CV.ML.dll) Version: 3.0.0.2161 (3.0.0.2161)
Syntaxpublic void trainE(
IInputArray samples,
IInputArray means0,
IInputArray covs0 = null,
IInputArray weights0 = null,
IOutputArray loglikelihoods = null,
IOutputArray labels = null,
IOutputArray probs = null
)
Public Sub trainE (
samples As IInputArray,
means0 As IInputArray,
Optional covs0 As IInputArray = Nothing,
Optional weights0 As IInputArray = Nothing,
Optional loglikelihoods As IOutputArray = Nothing,
Optional labels As IOutputArray = Nothing,
Optional probs As IOutputArray = Nothing
)
public:
void trainE(
IInputArray^ samples,
IInputArray^ means0,
IInputArray^ covs0 = nullptr,
IInputArray^ weights0 = nullptr,
IOutputArray^ loglikelihoods = nullptr,
IOutputArray^ labels = nullptr,
IOutputArray^ probs = nullptr
)
member trainE :
samples : IInputArray *
means0 : IInputArray *
?covs0 : IInputArray *
?weights0 : IInputArray *
?loglikelihoods : IOutputArray *
?labels : IOutputArray *
?probs : IOutputArray
(* Defaults:
let _covs0 = defaultArg covs0 null
let _weights0 = defaultArg weights0 null
let _loglikelihoods = defaultArg loglikelihoods null
let _labels = defaultArg labels null
let _probs = defaultArg probs null
*)
-> unit
Parameters
- samples
- Type: Emgu.CVIInputArray
Samples from which the Gaussian mixture model will be estimated. It should be a one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type it will be converted to the inner matrix of such type for the further computing. - means0
- Type: Emgu.CVIInputArray
Initial means of mixture components. It is a one-channel matrix of nclusters x dims size. If the matrix does not have CV_64F type it will be converted to the inner matrix of such type for the further computing. - covs0 (Optional)
- Type: Emgu.CVIInputArray
The vector of initial covariance matrices of mixture components. Each of covariance matrices is a one-channel matrix of dims x dims size. If the matrices do not have CV_64F type they will be converted to the inner matrices of such type for the further computing. - weights0 (Optional)
- Type: Emgu.CVIInputArray
Initial weights of mixture components. It should be a one-channel floating-point matrix with 1 x nclusters or nclusters x 1 size. - loglikelihoods (Optional)
- Type: Emgu.CVIOutputArray
The optional output matrix that contains a likelihood logarithm value for each sample. It has nsamples x 1 size and CV_64FC1 type. - labels (Optional)
- Type: Emgu.CVIOutputArray
The optional output "class label" (indices of the most probable mixture component for each sample). It has nsamples x 1 size and CV_32SC1 type. - probs (Optional)
- Type: Emgu.CVIOutputArray
The optional output matrix that contains posterior probabilities of each Gaussian mixture component given the each sample. It has nsamples x nclusters size and CV_64FC1 type.
See Also